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Abstract
Spin states and persistent currents are investigated theoretically in a quantum ring with an
embedded magnetic ion under a uniform magnetic field including the spin–orbit interactions.
The magnetic impurity acts as a spin-dependent δ-potential for electrons and results in gaps in
the energy spectrum, consequently suppressing the oscillation of the persistent currents. The
competition between the Zeeman splittings and the s–d exchange interaction leads to a
transition of the electron ground state in the ring. The interplay between the periodic potential
induced by the Rashba and Dresselhaus spin–orbit interactions and the δ-potential induced by
the magnetic impurity leads to significant variation in the energy spectrum, charge density
distribution, and persistent currents of electrons in the ring.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, spin-dependent optical and transport properties of
semiconductors have received renewed interest due to the
potential applications of spintronic devices [1, 2]. One of
the essential requirements in a spintronic device is to generate
spin-polarized current. In a diluted magnetic semiconductor
(DMS), the s–d exchange interaction [3] between the electrons
and the magnetic impurities makes it possible to tailor
electron spin splitting and thereby generate spin-polarized
currents [4–7].

The spin states of the electrons in a semiconductor can
also be manipulated by an external electric field via the
spin–orbit interaction (SOI). There are two types of SOI in
semiconductors. One is the Rashba spin–orbit interaction
(RSOI) induced by structure inversion asymmetry [8, 9], and
the other is the Dresselhaus spin–orbit interaction (DSOI)
induced by bulk inversion asymmetry [10]. The strength
of the RSOI can be tuned by external gate voltages or
asymmetric doping, while the strength of the DSOI is inversely
proportional to the thickness of the quantum well and thus
becomes comparable with that of the RSOI in narrow quantum
wells [11]. SOI makes it possible to generate a spin current

(SC) electrically without the use of ferromagnetic material or a
magnetic field [12, 13]. The impact of in-plane magnetic field
on the spin Hall conductivity has been investigated in the two-
dimensional electron gas (2DEG) in the presence of both the
RSOI and DSOI [14]. The coexistence of the s–d exchange
interaction and spin–orbit interactions in 2DEG could result
in a significant change of the spin polarization of the charge
current (CC) [15].

Recent progress in fabrication techniques makes it
possible to dope a few or even one magnetic impurity
in a semiconductor nanostructure [16]. Aharonov–Bohm
oscillations and spin-polarized transport properties in a
quantum open ring with an embedded magnetic impurity have
been investigated theoretically [17] using quantum waveguide
theory [18] without spin–orbit interactions. Persistent charge
and spin currents in closed quantum rings in the presence of a
nonmagnetic impurity were studied including the RSOI [19],
and a rounding effect of the nonmagnetic impurity on the
energy spectrum and the flux oscillation of the persistent CC
was found. However, it is interesting to investigate the effect
of a magnetic impurity on persistent currents, especially spin
current, in a quantum ring. The interplay between the RSOI
and DSOI can induce an effective azimuthal periodic potential

0953-8984/08/025222+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/02/025222
mailto:kchang@red.semi.ac.cn
http://stacks.iop.org/JPhysCM/20/025222


J. Phys.: Condens. Matter 20 (2008) 025222 J S Sheng and K Chang

in the ring, and consequently breaks the cylindrical symmetry
of the ring [20], and this feature makes the spin states and
the persistent currents depend sensitively on the position of
the magnetic impurity. The impact of Coulomb interaction
between electrons in a quantum ring on the energy spectrum
and persistent currents should be crucially important and has
been investigated theoretically in the absence of the spin–orbit
interactions [21–23]. We neglect it here in order to see clearly
the effects of the interplay between the spin–orbit interactions
and s–d exchange interaction on the single-particle spectrum.

In this work, we study spin states and persistent currents of
a 1D quantum ring with an embedded magnetic impurity in the
presence of both the RSOI and DSOI. The interplay between
the Zeeman splittings and the s–d exchange interaction leads
to a transition of the electron ground state. The energy
spectrum and the persistent currents depend sensitively on the
position of the magnetic impurity including both the RSOI and
DSOI, since the interplay between the RSOI and DSOI breaks
the cylindrical symmetry. It is interesting to notice that the
symmetry of the persistent SC in the parameter space (α–β) is
robust against the magnetic impurity. The paper is organized as
follows. The theoretical model is presented in section 2. The
numerical results and discussion are given in section 3. Finally,
we give a brief conclusion in section 4.

2. Theoretical model

In the presence of both the RSOI and DSOI, the dimensionless
Hamiltonian of a quantum ring with an embedded magnetic
impurity (see figure 1) under a uniform perpendicular magnetic
field reads [20]

H =
[
−i

∂

∂ϕ
+ φ + α

2
σr − β

2
σϕ(−ϕ)

]2

− α2 + β2

4
+ αβ

2
sin 2ϕ + geφσ e

z + gmφσ m
z

− 2π J ŝe · ŝmδ(ϕ − θ), (1)

where φ is the magnetic flux in the units of φ0 = h/e,
and α and β specify the strengths of the RSOI and DSOI,
respectively. σr = cos ϕσ e

x + sin ϕσ e
y and σϕ = cos ϕσ e

y −
sin ϕσ e

x , ge (gm) is the g factor of the electron (magnetic
impurity), and J is the strength of the s–d exchange interaction
between the conduction band electron ŝe and the magnetic
impurity ŝm. As discussed in our previous work, the interplay
between the RSOI and DSOI induces a sin 2ϕ potential (the
third term in equation (1)) and breaks the cylindrical symmetry
of the quantum ring [20].

The charge density operator and the charge current density
operator are

ρ̂(ϕ′) = −eδ(ϕ′ − ϕ)

ĵc(ϕ
′) = 1

2 [ρ̂(ϕ′)v̂ + v̂ρ̂(ϕ′)],
(2)

where ϕ′ refers to the field coordinates and ϕ the coordinates
of the electron. The velocity operator associated with the
Hamiltonian in equation (1) is

v̂ = eϕ

[
−i

∂

∂ϕ
+ φ + α

2
σr − β

2
σϕ(−ϕ)

]
. (3)

v

φ

e

m

Figure 1. Schematic diagram for a quantum ring with an embedded
magnetic impurity.

We can also introduce the spin density and spin current density
operators as

Ŝ(ϕ′) = ŝeδ(ϕ′ − ϕ)

ĵs(ϕ
′) = 1

2 [Ŝ(ϕ′)v̂ + v̂Ŝ(ϕ′)],
(4)

where ŝe is the vector of the electron spin operator. The
charge current density and spin current density can be obtained
by calculating the expectation values of the corresponding
operators:

jc(ϕ
′) = 〈�|ĵc|�〉 = −e Re{�†(ϕ′)v̂′�(ϕ′)}

js(ϕ
′) = 〈�|ĵs|�〉 = Re{�†(ϕ′)v̂′ŝe�(ϕ′)},

(5)

where �(ϕ) is the wavefunction of an electron in the ring. For
convenience, we denote ϕ′ and v̂′ as ϕ and v̂ hereafter.

The azimuthal (spin or charge) current can be defined
as [24]

I = 1

2π

∫ 2π

0
dϕ j (ϕ). (6)

At low temperature, N electrons will occupy the lowest
N levels of the energy spectrum. The total (charge or spin)
current is the summation over all occupied levels. [19]

3. Numerical results and discussion

3.1. The effects of the magnetic impurity

In order to clearly investigate the effects of the magnetic
impurity on the spin states and persistent currents in the 1D
ring, we first neglect the Zeeman splittings and spin–orbit
interactions. The Hamiltonian of the system becomes

H =
(

−i
∂

∂ϕ
+ φ

)2

− 2π J ŝe · ŝmδ(ϕ − θ). (7)

When a spin-1/2 magnetic impurity appears in the
quantum ring, the total angular momentum of the eigenstates
is equal to 1 (triplet) or 0 (singlet) due to the coupling between
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Figure 2. (a) Energy spectrum of a 1D quantum ring with one magnetic impurity at different magnetic fluxes; (b) probability density
distribution for the lowest triplet and singlet states of the 1D ring with one magnetic impurity for different magnetic fluxes. J = 0.5 and
θ = 0.

the electron spin ŝe and the impurity spin ŝm. In the coupling
representation, the Hamiltonian can be written as

Hc =
[

HS 0
0 HTI3

]
, (8)

where HS = (−i ∂
∂ϕ

+φ)2 + 3π J
2 δ(ϕ−θ) is the Hamiltonian for

the singlet states ( j = 0), HT = (−i ∂
∂ϕ

+ φ)2 − π J
2 δ(ϕ − θ) is

the Hamiltonian for the triplet states ( j = 1), and I3 represents
the 3 × 3 identity matrix. We can find that the magnetic
impurity behaves like a barrier (a well) for the singlet (triplet)
state when J > 0.

Figure 2(a) shows the energy spectrum of the quantum
ring with an embedded magnetic impurity. The energy
splittings between the triplet and singlet states are proportional
to the strength of the exchange interaction J > 0. The
neighboring singlet and triplet levels can degenerate at special
magnetic fluxes (integer or half-integer φ). When φ is an
integer, the energies of the fourfold degenerate levels are
1, 4, 9, . . . , n2, . . . , which can be obtained from sin πκ = 0
in both equation (A.6) and equation (A.10) in the appendix;
when φ is a half-integer, the energies of the fourfold degenerate
levels are 1/4, 9/4, 25/4, . . . , (n + 1/2)2, . . ., which can be
obtained from cos πκ = 0 in both equations (A.7) and (A.11)
in the appendix.

Note that the orbital wavefunction and spin wavefunction
can be separated in the ring without SOI. The eigenstates of
the system can be written as � = X jm(ϕ)| 1

2
1
2 jm〉 where

j = 0, 1 and m = − j, . . . , j . The orbital wavefunctions X jm

are determined by

(
−i

∂

∂ϕ
+ φ

)2

X00 + 3

2
π Jδ(ϕ − θ)X00 = E X00,

(
−i

∂

∂ϕ
+ φ

)2

X1m − 1

2
π Jδ(ϕ − θ)X1m = E X1m .

(9)

This means that the spin-1/2 magnetic impurity acts as a δ-
barrier (well) and well (barrier) on the singlet and triplet states
for J > 0 (J < 0), respectively. This feature consequently
leads to different localizations of the singlet and triplet states

J

φ

0 1/π2 2/π2 3/π2 4/π2 5/π2 6/π2 7/π2-1

-0.5

0

0.5

1

free triplet state

free triplet state

bound triplet state

Figure 3. The phase diagram of the ground triplet state in the ring at
different magnetic fluxes φ and s–d exchange interaction strengths J .

(see figure 2(b)). We assume J > 0 in this work without loss
of generality. In this case, the ground state of the system is a
triplet state.

We now focus on the lowest triplet state. The transition
between bound state and free state can be clearly seen in
figure 3 as a function of the magnetic flux φ and the strength
of the s–d exchange interaction J . The lowest triplet state
is a bound state at an integer φ because equation (A.13) has
one solution for any given positive J . Whether the lowest
triplet state at a half-integer φ is a bound state (E < 0)
or free state (E > 0) depends on the strength of the s–d
exchange interaction J . When J > 4/π2, equation (A.14)
has a nontrivial solution, and therefore the lowest triplet state
at a half-integer φ is a bound state. When J < 4/π2,
equation (A.14) only has a trivial solution, and thus the lowest
triplet state at a half-integer φ is a free state. This means that
when the strength of the s–d exchange interaction J is not large
enough (0 < J < 4/π2) the triplet ground state changes from
bound state to free state while varying the magnetic flux φ.
However, when J is large enough (J > 4/π2), the ground
state electron is always trapped by the magnetic impurity at
any magnetic flux φ.
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Figure 4. (a) The lowest triplet (dotted) and singlet (dashed) energy levels as functions of the s–d exchange interaction strength J . The dark
(gray) lines are for the integer (half-integer) magnetic flux φ. (b) The lowest four triplet gaps as functions of J . (c) The lowest four singlet
gaps as functions of J . (d) The true energy gaps as functions of the s–d exchange interaction strength J . The dashed line depicts the
asymptotic behavior of the lowest energy gap as J increases.

Figure 4(a) depicts the lowest triplet (dotted) and singlet
(dashed) energy levels as functions of the strength of the s–d
exchange interaction J at an integer magnetic flux (dark) or
half-integer magnetic flux (gray). The dash–dotted horizontal
lines correspond to those special fourfold degenerate points in
figure 2(a) whose energies do not change with J . The energy
difference of two triplet (or singlet) states at different magnetic
fluxes but of the same order approach zero as J → ∞, e.g.,

ET1(φ = 0) → ET1(φ = 1/2) → −π2 J 2/16

ES1(φ = 0) → ES1(φ = 1/2) = 1/4

ET2(φ = 0) → ET2(φ = 1/2) = 1/4

ES2(φ = 1/2) → ES2(φ = 0) = 1

ET3(φ = 1/2) → ET3(φ = 0) = 1

as J → ∞. These results can be obtained from approximate
solutions to the three transcendental equations, i.e. (A.5), (A.9)
and (A.12) in the appendix, for large J at integer and half-
integer magnetic flux. The lowest four energy gaps between
triplet (singlet) states are shown in figure 4(b) (4(c)). But
they are only pseudo-gaps. The true gaps are shown in
figure 4(d); the energy gaps appear successively and increase
as J increases. The lowest energy gap Eg1 = ES1(φ =

0) − ET1(φ = 1/2) approaches 1/4 + π2 J 2/16 as J → ∞
(see the dashed line in figure 4(d)), and the second lowest
energy gap Eg2 = ES2(φ = 1/2) − ET2(φ = 0) approaches
1 − 1/4 = 3/4 as J → ∞. The third, fourth, and fifth
lowest energy gaps approach 5/4, 7/4, and 9/4 as J → ∞,
respectively.

Figure 5(a) shows the persistent CCs from the lowest
triplet and singlet energy levels at different magnetic flux φ.
The persistent CCs from both the triplet and singlet states
are smoothed and suppressed by the magnetic impurity. The
persistent SCs from the lowest |1,−1〉, |1, 0〉, |1, 1〉, and |0, 0〉
are depicted in figure 5(b). The SC contributions of |1, 0〉 and
|0, 0〉 are always zero and the SC contributions of |1,−1〉 and
|1, 1〉 are always opposite, thus canceling each other. We note
that the persistent SC from the lowest |1,−1〉 is proportional
to the persistent CC from the same state. The oscillation
amplitudes, i.e. the maximal values, of the persistent CCs
from the lowest triplet and singlet energy levels are shown
in figure 5(c) with different strengths of the s–d exchange
interaction J . The persistent CCs from both the lowest triplet
and singlet energy levels decline as J increases. We recall
that the magnetic impurity acts as a δ-well (δ-barrier) for the
triplet (singlet) states. Both the δ-well and δ-barrier hinder
electron propagation along the ring and suppress the persistent
CCs (and SCs). The persistent CC from the lowest triplet
energy level declines more rapidly than its singlet counterpart
because the electron is more localized (around the δ-well) for
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Figure 5. (a) The persistent CC from the lowest triplet (singlet) energy level at different magnetic fluxes φ is denoted by the red solid (blue
dashed) line, J = 0.5; (b) the persistent SC from the lowest |1, −1〉 (|1, 1〉) state is denoted by the red solid (blue dashed) line, and the green
dotted lines are the persistent SC from the lowest |1, 0〉 state and that from the lowest |0, 0〉 state, J = 0.5; (c) the maximal value of the
persistent CC from the lowest triplet (singlet) energy level with different strengths of the s–d exchange J is denoted by a red solid (blue
dashed) line.
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Figure 6. (a) Energy spectrum of a GaAs ring with an embedded spin-1/2 magnetic impurity (J = 0.2); the Zeeman terms of both the
electron and the magnetic impurity are included, ge = −0.029 48 and gm = 0.134; the red dotted lines denote those levels with zero 〈 ĵz〉, and
the green dashed (blue solid) lines denote the |1,−1〉 (|1, 1〉) levels; (b) the three-phase transition of the ground state, and the variations of
〈 ĵz〉 (the red (dark) line) and 〈ŝz〉 (the green (gray) line) along the dashed line (J = 0.2), ḡ1 = −0.02948 and ḡ2 = 0.134.

the triplet states than for the singlet states. Nevertheless, for
small J the persistent CC from the lowest singlet energy level
can be smaller than that from the lowest triplet energy level
(see figure 5(a)) because the strength of the δ-barrier for the
singlet states is triple the strength of the δ-well for the triplet
states.

Now we include the intrinsic Zeeman terms of both the
electron and the magnetic impurity, e.g. GaAs ring. The energy
spectrum with an embedded spin-1/2 magnetic impurity is
depicted in figure 6(a). The dimensionless g factors ge =
g∗

e m∗ = −0.029 48 and gm = g∗
mm∗ = 0.134. It is interesting

to notice that the |0, 0〉 states and |1, 0〉 states are coupled
together by the Zeeman terms (see equation (A.16)). Although
these states are mixed, the projection of the angular momentum
along the z-axis 〈 ĵz〉 is still a good quantum number, i.e. 〈 ĵz〉 =
0 (see the red dotted lines in figure 6(a)). The states |1,−1〉
and |1, 1〉 are decoupled, and the Zeeman terms only alter their

energies (see the green dashed lines and the blue solid lines
in figure 6(a)), while the total spin ĵ and its z-component ĵz

are still good quantum numbers. Figure 6(b) shows the phase
diagram for the ground state of the ring at different J and φ.
From this figure one can see that the ground state in the ring can
transit among these three kinds of states due to the interplay
between the Zeeman terms and s–d exchange interaction as the
magnetic flux φ increases, and 〈 ĵz〉 and 〈ŝz〉 undergo sudden
changes across boundaries in the phase diagram (see the red
(dark) and green (gray) lines in figure 6(b)).

3.2. The effects of the RSOI and DSOI

In this subsection, we focus on the competition between
the s–d exchange interaction and SOIs. From equation (1),
the interplay between the RSOI and DSOI induces a sin 2ϕ

periodic potential and breaks the cylindrical symmetry of the
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Figure 7. Energy spectrum of 1D quantum ring with an embedded spin-1/2 magnetic impurity and two types of SOI, J = 0.2, α = 3 and
β = 2; the position of the impurity is θ = 0 in panel (a), and −π/4, π/4, ±π/2 in panel (b), (c), (d) respectively.

quantum ring. The spin states, energy spectrum and persistent
currents depend sensitively on the position of the magnetic
impurity.

Figure 7 depicts the influence of the position of the
magnetic impurity on the eigenenergy spectrum of the quantum
ring in the presence of both the RSOI and DSOI. Strictly
speaking, the degeneracy of the triplet states is lifted by the
RSOI and DSOI. The position of the magnetic impurity more
significantly influences the lower energy levels than the higher
levels since the wavefunctions of the lower states are more
localized than that of the higher states. In such an anisotropic
ring, θ = 0 and ±π/2 are equivalent positions which can
be connected to each other by mirror reflections with respect
to the ϕ = ±π/4 planes, and therefore two energy spectra
in panels (a) and (d) in figure 7 are exactly the same. The
energy splittings due to the s–d exchange interaction in panel
(b) ((c)) are largest (smallest) because the probability density
of the lowest bound states exhibits maxima (minima) when
the magnetic impurity is located at the bottom (peak) of the
sin 2ϕ periodic potential induced by the interplay between
the RSOI and DSOI. We also notice that the corresponding
energy splittings of the second bound state in panel (b) are
zero because the magnetic impurity is located just at the node
(θ = −π/4) of the wavefunction of the second bound state.

Figure 8 shows the probability density distributions of the
lowest singlet and triplet states for different positions of the
magnetic impurity. The electron is distributed along the ring
according to the potential αβ

2 sin 2ϕ, which is induced by the

interplay between the RSOI and DSOI (see equation (1)) in
the absence of a magnetic impurity. This potential αβ

2 sin 2ϕ

exhibits two valleys at ϕ = −π/4 and 3π/4, where the
electron is most likely to appear, and two peaks at ϕ = π/4
and −3π/4, corresponding to the minimum of the probability
density of the electron. As shown in the previous subsection,
the magnetic impurity acts as a δ-like barrier for the singlet
state electron and as a δ-well for the triplet state electron when
J > 0, and the height of the δ-barrier is three time larger
than that of the δ-well (see equation (9)). Thus the presence
of the magnetic impurity will make the potential profile at
the positions ϕ = −π/4 and 3π/4 no longer equivalent.
From figure 8 one can find that the competition between the
magnetic impurity and SOIs, i.e. the probability density of an
electron at one of the two valleys, is enhanced (reduced) for the
triplet (singlet) state electron when the position of the magnetic
impurity approaches the valley. It is interesting to note that
the magnetic impurity acting as a δ-like barrier for the singlet
state could also enhance the probability density of the electron
at the other valley ϕ = 3π/4 when it approaches the valley
ϕ = −π/4 of the potential αβ

2 sin 2ϕ.
Two types of energy gaps appear in the energy spectrum

of a quantum ring, including the RSOI, the DSOI, and the s–d
exchange interaction (see figure 9). In our previous work [20],
we discussed the energy gaps caused by the coexistence of
the RSOI and DSOI (Eg-I). As shown in figure 4(d), the s–
d exchange interaction can also open an energy gap (Eg-II)
if the strength J is greater than the corresponding threshold

6
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Figure 8. The probability density distributions of the lowest triplet (panel (a)) and singlet (panel (b)) states. The red solid (green dashed, blue
dotted) line is for the magnetic impurity located at θ = −π/4 (0, π/4). Other parameters are J = 0.2, α = 3, β = 2, and φ = 0.
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Figure 9. Two types of energy gaps appear in the energy spectrum
while the spin–orbit interactions and s–d exchange interaction
coexist in the quantum ring. Eg-I denotes the lowest (direct) energy
gap induced by the RSOI and DSOI; Eg-II denotes the lowest
(indirect) energy gap induced by the s–d exchange interaction.
α = β = 2, J = 1, θ = 0.

value. We demonstrate in figure 10 that the two types of
energy gaps tend to compete against each other. The lowest
SOI induced gap declines as the strength of the s–d exchange
interaction increases (see figure 10(a)). This is because the
energy splittings between singlet and triplet states caused by
the s–d exchange interaction tend to squeeze the gap induced
by SOI especially when the magnetic impurity approaches
the valley of potential (θ = −π/4) since the s–d exchange
interaction is a contact interaction that depends on the overlap
between the magnetic impurity and the electron. Figure 10(b)
depicts the energy gap induced by the s–d exchange interaction
as a function of the strength of SOIs. The increasing strengths
of the RSOI and DSOI enhance the localization of the electron.
The gap increases when the magnetic impurity is located at
the valley of the potential αβ

2 sin 2ϕ (θ = −π/4) as the SOI
strengths (α and β) increase, or decrease when the magnetic
impurity is at other sites. The gap width decreases most
rapidly when the magnetic impurity is located at the peak of
the potential αβ

2 sin 2ϕ (θ = π/4).
The s–d exchange interaction can also influence the

persistent SC. In figure 11(a), we show a contour plot of the

persistent SC as a function of the s–d exchange interaction
strength J and the position of the magnetic impurity θ . We
can see that the persistent SC oscillates with the magnetic
impurity position θ when the strength J is fixed. The
magnitude of the persistent SC exhibits maxima at θ =
π/4, 3π/4, 5π/4, 7π/4, where the valleys and peaks of the
potential αβ

2 sin 2ϕ are. There are also four specific positions
of magnetic impurity (the white regions in figure 11(a)) where
the magnitude of the persistent SC exhibits minima. These
positions are determined by the specific strengths of the RSOI
and DSOI. When the magnetic impurity is at a peak (valley)
of the potential αβ

2 sin 2ϕ, the magnitude of the persistent SC
increases (decreases) as the s–d exchange interaction strength
J increases. This provides us with a possible way to control
the spin current utilizing the magnetic impurity.

We depict the persistent SC with different RSOI strength α

and DSOI strength β in figure 11(b) at a fixed J . The symmetry
of the persistent SC in the α–β parameter space is still the same
as what we reported before in the absence of the magnetic
impurity [20]. The eigenenergy levels become twofold
degenerate when α and β are tuned to proper values in the
absence of the magnetic impurity, and the contributions from
these two degenerate levels cancel each other and consequently
lead to the vanishing SC. This twofold degeneracy will be lifted
by the s–d exchange interaction and the levels split into singlet
and triplet states. The contributions to the persistent SC from
the singlet states (|0, 0〉) are zero while those from the triplet
states (|1,−1〉, |1, 0〉, |1, 1〉) states cancel each other so that
the total persistent SC is still zero even in the presence of the
magnetic impurity. This is why the symmetry is robust against
the magnetic impurity. But the magnitude of the persistent SC
is suppressed by the magnetic impurity, i.e. the s–d exchange
interaction.

4. Conclusions

We have investigated theoretically the spin states and persistent
currents (CC and SC) in a 1D ring with an embedded magnetic
impurity. The s–d exchange interaction between the electron
and the magnetic impurity splits the eigenstates into singlet

7
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Figure 10. (a) The lowest SOI induced gap versus the s–d exchange interaction strength J with different positions of the magnetic impurity,
α = β = 3; (b) the lowest s–d induced gap versus the SOI strengths (α = β) with different positions of the magnetic impurity, J = 1.5.
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Figure 11. (a) Contour plot of the persistent SC as a function of the strength J of the s–d exchange interaction and the impurity position θ ,
α = 3, β = 2, and φ = 0.5; (b) contour plot of the persistent SC as a function of the RSOI strength α and DSOI strength β, J = 0.5, θ = 0,
and φ = 0.5.

states and triplet states. The magnetic impurity acts as a δ-
barrier (δ-well) for the singlet (triplet) states when J > 0,
opens energy gaps in the energy spectrum, and suppresses the
persistent CC and SC. The competition between the Zeeman
terms and the s–d exchange interaction leads to a transition
of the electron ground state in the ring. The eigenenergy
spectrum, probability distribution, and persistent SC depend
sensitively on the position of the magnetic impurity. The
symmetry of the persistent SC in parameter space (α–β) is not
destroyed by the magnetic impurity.
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Appendix. The Hamiltonian in the coupling
representation

In the decoupling representation, the basis set is the direct
product of the spin states of the electron and the magnetic
impurity |se

z 〉
⊗ |sm

z 〉. The Hamiltonian of a one-dimensional

ring with an embedded magnetic impurity can be written as

Hnc =
| ↓↓〉 | ↑↓〉 | ↓↑〉 | ↑↑〉

| ↓↓〉
| ↑↓〉
| ↓↑〉
| ↑↑〉

⎡
⎢⎢⎣

H−
0
0
0

0
H+

−π Jδ(ϕ − θ)

0

0
−π Jδ(ϕ − θ)

H+
0

0
0
0

H−

⎤
⎥⎥⎦ ,

(A.1)

where H+ = (−i ∂
∂ϕ

+ φ)2 + π J
2 δ(ϕ − θ) and H− = (−i ∂

∂ϕ
+

φ)2 − π J
2 δ(ϕ − θ). We can transform it to the coupling

representation via a unitary operator S which is related to C–G

coefficients S
1
2

1
2

m1m2 jm .

Hc = S−1 HncS,

S =

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉
| ↓↓〉
| ↑↓〉
| ↓↑〉
| ↑↑〉

⎡
⎢⎢⎣

0
1/

√
2

−1/
√

2
0

1
0
0
0

0
1/

√
2

1/
√

2
0

0
0
0
1

⎤
⎥⎥⎦ ,

S−1 = S′.
(A.2)
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Thus the Hamiltonian in the coupling representation is

Hc =
[

HS 0
0 HT I3

]
, (A.3)

where HS = (−i ∂
∂ϕ

+φ)2 + 3π J
2 δ(ϕ−θ) is the Hamiltonian for

the singlet states ( j = 0), HT = (−i ∂
∂ϕ

+ φ)2 − π J
2 δ(ϕ − θ) is

the Hamiltonian for the triplet states ( j = 1), and I3 represents
the 3 × 3 identity matrix.

Because of the cylindrical symmetry, the position of the
magnetic impurity can be assumed to be θ = 0 without loss of
generality.

For the singlet state, the magnetic impurity acts as a δ-
potential barrier whose strength is 3π J

2 (J > 0). All related
eigenstates should be free states in the ring (E = κ2 > 0, κ >

0), and can be determined by

(
−i

∂

∂ϕ
+ φ

)2

X = κ2 X, 0 < ϕ < 2π

X (0) = X (2π)

X ′(0) − X ′(2π) = 3π J

2
X (0).

(A.4)

The general solution X (ϕ) = C1ei(κ−φ)ϕ + C2e−i(κ+φ)ϕ; we
obtain the following transcendental equation:

4κ[cos 2πφ − cos 2πκ] = 3π J sin 2πκ. (A.5)

The singlet eigenenergies E = κ2 can be obtained from the
zeros of equation (A.5). We further consider the following
special cases.

(a) When φ is an integer: the κ values are determined by

sin πκ = 0 or cot πκ = 4κ

3π J
. (A.6)

(b) When φ is a half-integer: the κ values are determined
by

cos πκ = 0 or tan πκ = − 4κ

3π J
. (A.7)

For the triplet state electrons, the magnetic impurity acts
as a δ-potential well whose strength is π J

2 (J > 0). The lowest
triplet state could be a bound state (E = −κ2 < 0, κ > 0),
and the higher states can still be free states extended over the
whole ring (E = κ2 > 0, κ > 0). The free triplet eigenstates
can be determined by

(
−i

∂

∂ϕ
+ φ

)2

X = κ2 X, 0 < ϕ < 2π

X (0) = X (2π)

X ′(0) − X ′(2π) = −π J

2
X (0).

(A.8)

The corresponding transcendental equation can be derived
similarly,

4κ[cos 2πφ − cos 2πκ] = −π J sin 2πκ. (A.9)

The eigenenergy spectra at the specific magnetic fluxes are
the following.

(a) When φ is an integer: the κ values are determined by

sin πκ = 0 or cot πκ = − 4κ

π J
. (A.10)

(b) When φ is a half-integer: the κ values are determined
by

cos πκ = 0 or tan πκ = 4κ

π J
. (A.11)

The triplet bound state can be obtained by substituting
κ with iκ in equations (A.8)–(A.11). The corresponding
transcendental equation is

4κ[cos 2πφ − cosh 2πκ] = −π J sinh 2πκ. (A.12)

The eigenenergy spectra at the specific magnetic fluxes are
the following.

(a) When φ is an integer: the κ values are determined by

coth πκ = 4κ

π J
. (A.13)

(b) When φ is a half-integer: the κ values are determined
by

tanh πκ = 4κ

π J
. (A.14)

The Zeeman terms are diagonal matrix elements in
decoupling representation,

H Z
nc =⎡

⎢⎣
−(ge + gm)φ 0 0 0

0 (ge − gm)φ 0 0
0 0 (gm − ge)φ 0
0 0 0 (ge + gm)φ

⎤
⎥⎦ .

(A.15)

But in coupling representation this becomes

H Z
c = S−1 H Z

ncS =⎡
⎢⎣

0 0 (ge − gm)φ 0
0 −(ge + gm)φ 0 0

(ge − gm)φ 0 0 0
0 0 0 (ge + gm)φ

⎤
⎥⎦ .

(A.16)

Generally speaking, ge is not equal to gm, and therefore the
singlet |0, 0〉 and triplet |1, 0〉 states are coupled together by
the Zeeman terms (see (ge − gm)φ in equation (A.16)).
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Skośkiewicz T, Karczewski G, Wojtowicz T, Piotrowska A,
Kossut J and Dietl T 1995 Influence of s–d exchange
interaction on universal conductance fluctuations in
Cd1−x Mnx Te:In Phys. Rev. Lett. 75 3170–3

[7] Sawicki M, Dietl T, Kossut J, Igalson J, Wojtowicz T and
Plesiewicz W 1986 Influence of s–d exchange interaction on
the conductivity of Cd1−x Mnx Se:In in the weakly localized
regime Phys. Rev. Lett. 56 508–11

[8] Rashba E I 1960 Properties of semiconductors with an
extremum loop. 1. Cyclotron and combinational resonance
in a magnetic field perpendicular to the plane of the loop
Sov. Phys.—Solid State 2 1109

[9] Bychkov Y A and Rashba E I 1984 Oscillatory effects and the
magnetic-susceptibility of carriers in inversion-layers
J. Phys. C: Solid State Phys. 17 6039

[10] Dresselhaus G 1955 Spin–orbit coupling effects in zinc-blende
structures Phys. Rev. 100 580

[11] Lommer G, Malcher F and Rössler U 1988 Spin splitting in
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